
7.1.1 N-th Roots and Rational Exponents 

 
 
A star passing too close to a black hole will be 
torn to shreds  by the black holes intense  
gravity field, as shown in this artistic painting. 
(Courtesy  M.Weiss NASA/Chandra) 

 One of the most peculiar 
things about black holes is that, when 
you are close to one, time and space 
are badly distorted.   
 
 Imagine two astronauts, Stan 
and Sharon,  each with a 
synchronized clock. Stan remains at 
a great distance from the black hole, 
but Sharon takes a trip close to the 
black hole. Although the passage of 
time measured by Stan’s clock will 
seem normal, he will watch as the 
reading on Sharon’s clock slows 
down as she gets closer to the black 
hole! 

Problem 1 – The formula that relates the elapsed minutes on Sharon’s clock, x, to 
the time that Stan sees passing on her clock, y, when Sharon is at a distance of r 
kilometers from the center of the black hole is given by: 

                                              2.8
1

x
y

r




   

 
If Sharon is in obit around the black hole at a distance of r = 2800 kilometers; A) 
How many hours will elapse on Stan’s clock for every hour, x, that passes on 
Sharon’s clock? B) How many seconds is the time difference between the two 
cocks? 
 
 
Problem 2 – Sharon travels to within 4 kilometers of the black hole, without being 
torn to shreds by its enormous gravity. A) How many hours will elapse on Stan’s 
clock for every hour, x, that passes on Sharon’s clock? B) How many seconds is 
the time difference between the two cocks? 
 
 
 
Problem 3 – To five significant figures, how close does Sharon have to be to the 
black hole before one week elapses on Stan’s clock for every hour that passes on 
Sharon’s clock? 
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Answer Key 7.1.1 
 Problem 1 – The formula that relates the elapsed minutes on Sharon’s clock, x, to the 

time that Stan sees passing on her clock, y, is given by: 
 

2.8
1

x
y

r




 

 
If Stan and Sharon are together in obit around the black hole at a distance of r = 2800 
kilometers, A) how many hours will elapse on Stan’s clock for every hour, x, that 
passes on Sharon’s clock? B) how many seconds is the time difference between the 
two cocks? 
 

Answer:   A) r = 2800 so y =  x/(1-0.001)
1/2

 =  1.0005 x  so for x = 1 hour on Sharon’s 
clock, Stan will see y=1.0005 hours pass.  
 
B) This equals a time difference between them of y-x =  (1.0005-1.0)*3600 = 1.8 
seconds. 
 
Problem 2 – Sharon travels to within 4 kilometers of the black hole, without being torn 
to shreds by its enormous gravity. Recalculate your answers to Problem 1 at this new 
distance. 
 

Answer:  A) r = 4 so y =  x/(1-0.7)
1/2

 =  1.83 x  so for x = 1 hour on Sharon’s clock, 
Stan will see 1.83 hours pass.  
 
B) This equals an additional y-x = (1.83 -1.0)*3600 = 2,988 seconds. 
 
Problem 3 – To five significant figures, how close does Sharon have to be to the black 
hole before one week elapses on Stan’s clock for every hour that passes on Sharon’s 
clock? 
 
Answer:  One week =  24 hours/day x 7 days/week =   168 hours, so we want to find a 
value for r such that y = 168 for x = 1.   
 

168 = 1/(1-2.8/r)
1/2

  so solving for r we get    
 

2
2.8

1
1

168

r 
   
 

 

 
so r =  2.8001 kilometers. 
 
Note: For this problem, the black hole’s radius is exactly 2.8 kilometers, so Sharon is 
within  0.0001 kilometers or 100 centimeters of its surface!
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7.1.2 N-th Roots and Rational Exponents 

 The lovely nebulae that 
astronomers photograph in all of their 
vivid colors are created by the 
ultraviolet light from very hot stars. The 
intensity of this light causes hydrogen 
gas to become ionized within a 
spherical zone defined by the 
equation; 

                  

21

320.3R L N


  
 
where N is the density of the gas in 

atoms/cm
3
 and L is the luminosity of 

the stars in multiples of the sun’s 
power. And R is the radius of the 
nebula in light years. 

 The image above was taken of the famous Great Nebula in Orion (Messier-
42) by the Hubble Space Telescope. Notice its semi-circular appearance.  
 
 
Problem 1 – Solve the equation for the luminosity of the stars, L, given the gas 
density and nebula radius. 
 
 
 
 
Problem 2 - The Orion Nebula has a radius of R=2.5 light years, and an average 

density of  about N=60 atoms/cm
3
.  To two significant figures, what is the total 

luminosity, L, of the stars providing the energy to keep the nebula ‘turned on’? 
 
 
 
 
Problem 3 – Solve the equation for the gas density, given the luminosity of the 
stars and the radius of the nebula. 
 
 
 
 
Problem 4 – The Cocoon Nebula has a radius of R=3 light years and is produced 
by a star with a luminosity of L = 1000 times the sun. To two significant figures, 
what is the approximate gas density, N, in the nebula? 
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Answer Key 7.1.2 
 Problem 1 – Solve the equation for the luminosity of the stars, L, given the gas density 

and nebula radius. 
 

Answer:  L = 900 r
2
 N

4/3
 

 
 
 
Problem 2 - The Orion Nebula has a radius of R=2.5 light years, and an average 

density of  about N=60 atoms/cm
3
.  To two significant figures, what is the total 

luminosity, L, of the stars providing the energy to keep the nebula ‘turned on’? 
 

Answer:  L = 900 (2.5)
2
 (60)

4/3
 

               L = 1,300,000 times the sun. 
 
 
 
Problem 3 – Solve the equation for the gas density, given the luminosity of the stars 
and the radius of the nebula. 
 

Answer:  N = 0.16 L
3/4 

R
-3/2

 
 
 
 
Problem 4 – The Cocoon Nebula has a radius of R=3 light years and is produced by a 
star with a luminosity of L = 1000 times the sun. To two significant figures, what is the 
approximate gas density in the nebula? 
 

Answer:   N = 0.16 (1000)
3/4

 (3)
-3/2

 
 

                    =    5.5 atoms/cm
3
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7.1.3 Nth Roots and Rational Exponents 

 When the solar wind 
flows past Earth, it pushes on 
Earth’s magnetic field and 
compresses it. The distance 
from Earth's center, R, where 
the pressure from Earth's 
magnetic field balances the 
pressure of the solar wind is 
given by the equation: 
 

     In this equation, D is the density in grams per cubic centimeter (cc) of the gas 
(solar wind, etc) that collides with Earth’s magnetic field, and V is the speed of this gas 
in centimeters per second.  The quantity, R, is the distance from the center of Earth to 
the point where Earth's magnetic field balances the pressure of the solar wind in the 
direction of the sun.  
 
 
Problem 1 -  The table below gives information for five different solar storms. Complete 
the entries to the table below, rounding the answers to three significant figures: 
 
 
Problem 2 -  The fastest speed for a solar storm ‘cloud’ is 1500 km/s. What must the 
density be in order that the magnetopause is pushed into the orbits of the 
geosynchronous communication satellites at 6.6 Re? 

Storm Date Day 
Of Year 

Density 
(particle/cc) 

Speed 
(km/s) 

R  
(km) 

1 11/20/2003 324 49.1 630  
2 10/29/2003 302 10.6 2125  
3 11/06/2001 310 15.5 670  
4 3/31/2001 90 70.6 783  
5 7/15/2000 197 4.5 958  
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Answer Key                                                              7.1.3 

 The information about these storms and other events  can be obtained from the NASA 
ACE satellite  by selecting data for H* density and Vx (GSE) 
 
http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_MAG-SWEPAM.html 

Storm Date Day 
Of Year 

Density 
(particle/cc) 

Speed 
(km/s) 

R  
(km) 

1 11/20/2003 324 49.1 630 42,700 
2 10/29/2003 302 10.6 2125 37,000 
3 11/06/2001 310 15.5 670 51,000 
4 3/31/2001 90 70.6 783 37,600 
5 7/15/2000 197 4.5 958 54,800 

Problem 2 -  The fastest speed for a solar storm ‘cloud’ is 3000 km/s. What 
must the density be in order that the magnetopause is pushed into the 
orbits of the geosynchronous communication satellites at 6.6 Re (42,000 
km)? 
 
Answer: Solve the equation for D to get: 

For 1500 km/s  V = 1.5 x 108 cm/s, and for R = 6.6, we have 
 
  D =  0.72/ ( 8 x 3.14 x 6.66 x (1.5 x 108)2) =  1.52 x 10-23 gm/cc 
 
Since a proton has a mass of 1.6 x 10-24 grams, this value for the density, D, is 
equal to  (1.52 x 10-23/ 1.6 x 10-24) =  9.5 protons/cc.  
 
 
For Extra Credit, have students compute the density if the solar storm pushed 
the magnetopause to the orbit of the Space Station (about R = 1.01 RE). 
Answer: D =  3 x 10-19 gm/cc or 187,000 protons/cc. A storm with this density 
has never been detected, and would be catastrophic! 
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7.2.1 Properties of Rational Exponents 

 
Artistic rendering of an accretion disk showing 
gas heating up as it flows in to the black hole. 
(Courtesy NASA/JPL – Caltech) 

 Matter that flows into a black hole 
usually takes up residence in an orbiting disk 
of gas called an accretion disk. Friction 
causes this gas to heat up, and the 
temperature of the gas is given by the 
formula: 

                        

 
1

4
6

3

4

3.7 10
MC

T x

R


 

 
where M is the mass of the black hole, C is 
the rate at which the gas enters the disk and 
R is the distance of the gas from the black 
hole.  

 To make calculations easier when using large astronomical numbers, 
astronomers specify M in multiples of the mass of our sun, R in multiples of the Earth-
Sun distance, and C in terms of the number of solar masses consumed each year. 
So, for a 100 solar-mass black hole accreting matter at a rate of 0.0001 solar masses 
each year, the temperature at a distance of 10 Astronomical Units will be found by 
substituting R=10 ,M=100 and C=0.0001 into the equation.  
 
 
Problem 1 – What does the formula look like for the case of T evaluated at C=0.001 
solar masses per year, and R = 2 times the Earth-Sun distance? 
 
 
Problem 2 – For a black hole with a mass of M=1000 times the sun, and consuming 
gas at a rate of C=0.00001 solar masses each year,  how far from the black hole, in 
kilometers, will the gas be at ‘room temperature’ of T = 290 K? (The Earth-Sun 
distance equals R =1 AU = 150 million kilometers) 
 
 
Problem 3 – Consider two black holes with masses of 1.0 times the sun, and 100.0 
times the Sun, consuming gas at the same rate. An astronomer makes a temperature 
measurement at a distance of R=x from the small black hole, and a distance of y from 
the large black hole. A) What is the formula that gives the ratio of the temperatures 
that he measures in terms of x and y? B) What is the temperature ratio if the 
astronomer measures the gas at the same distance? C) For which black hole is the 
temperature of the accreting gas highest at each distance? 
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Answer Key 7.2.1 
 Problem 1 – What does the formula look like for the case of T evaluated at C=0.001 

solar masses per year, and R = 2 times the Earth-Sun distance? 
 

T = 3.7x10
6
 M

1/4 
(0.001)

1/4 
/ 2

3/4
 =   390,000 M    K 

 
 
Problem 2 – For a black hole with a mass of M=1000 times the sun, and consuming 
gas at a rate of C=0.00001 solar masses each year,  how far from the black hole in 
kilometers will the gas be at ‘room temperature’ of T = 290 K? (The Earth-Sun distance 
equals 150 million kilometers) 
 

290 =  3.7x106 (.00001)
1/4

 (1000)
1/4

 / R
3/4

 
 

R
3/4 

=  4035 
 
R =   64,060 times the Earth-Sun distance. 
 

or    R = 64,060 x 150 million km =   9.6x10
12

 kilometers. 
 

Note: 1 light year =  9.2 x 10
12

 km so you would have to be just over 1 light year from 
the black hole 
 
Problem 3 – Consider two black holes with masses of 1.0 times the sun, and 100.0 
times the sun, consuming gas at the same rate. An astronomer makes a temperature 
measurement at a distance of R=x from the small black hole, and a distance of y from 
the large black hole. A) What is the formula that gives the ratio of the temperatures that 
he measures in terms of x and y? B) What is the temperature ratio if the astronomer 
measures the gas at the same distance? C) For which black hole is the temperature 
highest at each distance? 
 
A) 

T(x) =   3.7x10
6
 C

1/4
 (1.0)

1/4
 / x

3/4
 

 

T(y) = 3.7x10
6
 C

1/4
 (100)

1/4
 / y

3/4
 

 

So Tx/Ty =     3.7x10
6
 y

3/4
 /    1.2x10

7
 x

3/4
              Tx/Ty =  0.31 y

3/4
 / x

3/4
 

 
B)   Tx/Ty = 0.31. 
 
C) Because T(x)/T(y) = 0.31, the more massive black hole, T(y), is 1/0.31 = 3.2 times 
hotter! This is true at every distance because for x = y, the ratio of the temperatures is 
independent of  x and y. 
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7.2.2 Properties of Rational Exponents 

 As more planets are being discovered 
beyond our solar system, astronomers are 
searching for planets on which liquid water 
can exist. This means that the planet has to 
be close enough for water to turn from solid 
ice to a liquid (T = 273 Kelvin) but not so hot 
that the liquid water turns to steam (T = 373 
Kelvin). astronomers call this range the 
Habitable Zone around the star. 
 A formula relates the temperature of 
an Earth-like planet to its distance from its 
star, d, the radius of the star, R, and the 
temperature of its star, T*: 

                     

1

2
0.6 *

R
T T    

 
Sketch of Habitable Zones around stars of 
different temperatures and sizes. 
(Courtesy NASA/Kepler) 

d
   
 

where R and d are in kilometers, and T is the 
temperature in Kelvins. 

Problem 1 – For a star identical to our sun, T* = 5770 K and R = 700,000 km. At 
what distance from such a star will a planet  be warm enough for water to be in liquid 
form? 
 
 
 
 
 
 
 
 
Problem 2 – The star Polaris has a temperature of 7,200 K  and a radius 30 times 
larger than our sun.  
 
A) Over what distance range will water remain in liquid form? (Note Astronomers call 
this the Habitable Zone of a star).  
 
 
B) Compared to the Earth-Sun distance of 150 million km, called an Astronomical 
Unit, what is this orbit range in Astronomical Units? 
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Answer Key 7.2.2 
 Problem 1 – For a star identical to our sun, T* = 5770 K and R = 700,000 km. At what 

distance from such a star will a planet  be warm enough for water to be in liquid form? 
 

Answer:   273 =  0.6 (5770) (700,000/D)
1/2

 

                D
1/2

 =  0.6 (5770)(700,000)
1/2

/273 

                D
1/2

 = 10,601 
               D = 112 million km. 
 
 
Problem 2 – The star Polaris has a temperature of 7,200 K  and a radius 30 times 
larger than our sun. A) Over what distance range will water remain in liquid form? 
(Note Astronomers call this the Habitable Zone of a star). B) Compared to the Earth-
Sun distance of 150 million km, called an Astronomical Unit, what is this orbit range in 
Astronomical Units? 
 
Answer: 
 
A)  

T =  1.9x10
7 

/ D
1/2

 
 

D
1/2

 = 1.9x10
7
/273   squaring both sides,   D =  4.8x10

9
 km 

 

D
1/2

 =  1.9x10
7
/373     squaring both sides,  D =   2.6x10

9
 km 

 
 
 
B)   32 AU to  17 AU.    This is about the distance between the orbits of Neptune and 
Pluto in our solar system. 
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7.2.3 Properties of Rational Exponents 

 
Seen here is the decay of a quark-gluon 
plasma shown by numerous particles 
streaming out from the site of the plasma. 
These conditions were created at the 
Brookhaven Heavy Ion Collider. 

 During the Big Bang, the universe 
was much hotter and denser than it is today. 
As it has continued to expand in time, the 
temperature continues to decrease in time.  
 
 The temperature can be predicted 
from a mathematical model of the expansion 
of the universe, and the properties of matter 
at various times in the universe’s history.   
 
 A formula that relates the 
temperature, T, in degrees Kelvin to the 
elapsed time in seconds since the Big Bang, 
t, is: 
 

                   

2

448

c
t

GaT
  

Problem 1 – The variables c, G and a are actually physical constants whose 
values are measured under laboratory conditions. The speed of light, c, has a 

value of 3x10
10

 centimeters/sec; the constant of gravity, G, has a value of 

6.67x10
-8

 cm
3
/gm

2
/sec

2
; and the radiation constant, a, has a value of   

7.6 x 10
-15 

gm sec
2
/cm

5
 K

4
.  Based on these values, and using  = 3.14, re-write 

the formula so that the time, t, is expressed in seconds when T is expressed in 
degrees K. 
  
 
 
Problem 2 – Derive a formula that gives the temperature, T, in terms of the time 
since the Big Bang, t, in seconds. 
 
 
 
 
Problem 3 – A very important moment in the history of the universe occurred 
when the temperature of matter became so low that the electrons and protons in 
the expanding cosmic plasma cooled enough that stable hydrogen atoms could 
form. This happened at a temperature of about 4,000 K. How many years after 
the Big Bang did this occur? 
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Answer Key 7.2.3 
 Problem 1 – The variables c, G and a are actually physical constants whose values 

are measured under laboratory conditions. The speed of light, c, has a value of 3x10
10

 

centimeters/sec; the constant of gravity, G, has a value of 6.67x10
-8

 

centimeters
2
/gram

2
/sec

2
; and the radiation constant, a, has a value of  7.6 x 10

-15 

grams sec
2
/cm

5
 K

4
.  Based on these values, and using  = 3.14, re-write the formula 

so that the time, t, is expressed in seconds when T is expressed in degrees K. 
 
Answer: 
 

                                                    
20

2

1.08 10x
t   seconds 

T


 
 
 
 
 
Problem 2 – Derive a formula that gives the temperature, T, in terms of the time since 
the Big Bang, t, in seconds. 
 
Answer: 

                                                   T =     1.04x10
10

 t
1/2

   K 
 
 
 
 
 
Problem 3 – A very important moment in the history of the universe occurred when the 
temperature of matter became so low that the electrons and protons in the expanding 
cosmic plasma cooled enough that stable hydrogen atoms could form. This happened 
at a temperature of about 4,000 K. How many years after the Big Bang did this occur? 
 
Answer:  T = 4000 

  So t =  1.08x10
20

 / (4000)
2
 = 6.75 x 10

12
 seconds 

 

Since 1 year = 3.1 x 10
7
 seconds,  

T =   220,000 years after the Big Bang. 
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7.2.4 Properties of Rational Exponents 

 
Most of the detected exoplanets ae easiest to 
find when they orbit close to their star. This 
makes them very hot worlds that are not 
likely to support life. 

 The discovery of planets orbiting 
nearby stars has led to astronomers 
discovering over 425 planets using a 
variety of techniques and technologies. 
Although the majority of these worlds are 
as large, or larger, than Jupiter, smaller 
‘super-Earths’ are now being detected, 
and some of these may have the 
conditions necessary for life. 
 
 The planet Gliese-581c orbits a 
small star located about 20 light years 
from our sun in the constellation Libra, and 
takes only 12 days to orbit once around its 
star. 
 

Problem 1 – Astronomers have measured the mass of Gliese-581c to be about 
5.4 times that of our Earth. If the mass of a spherical planet is given by the 
formula: 
 

                                                    34

3
M DR  


where R is the radius of the planet and D is the average density of the material in 
the planet, solve this equation for R in terms of R and D. 
 
 
 
 
Problem 2 - What is the radius of the planet, in kilometers, if the density is similar 

to solid rock with D = 5500 kg/m
3
  and the mass of Earth is 6 x 10

24
 kg? 

 
 
 
 
Problem 3 -   What is the radius of the planet, in kilometers, if the density is 

similar to that of the Ice World Neptune with D =  1600 kg/m
3
? 
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Answer Key 7.2.4 
 Problem 1 – Astronomers have measured the mass of Gliese-581c to be about 5.4 

times that of our Earth. If the mass of a spherical planet is given by the formula: 
 

34

3
M DR  


where R is the radius of the planet and D is the average density of the material in the 
planet, solve this equation for R in terms of R and D. 
 
Answer: 
 

R =  (3 M / 4D)
1/3

 
 
 
 
 
Problem 2 - What is the radius of the planet if the density is similar to solid rock with D 

= 5500 kg/m
3
  and the mass of Earth is 6 x 10

24
 kg? 

 
Answer: 

      R =  (3 x 5.4 x 6x10
24

/ (4 (3.14) 5500) )
1/3

 =  1.1 x 10
7 

meters = 11,000 km. 
 
 
 
 
Problem 3 -   What is the radius of the planet if the density is similar to that of the ice 

world Neptune with D =  1600 kg/m
3
? 

 
Answer: 

        R =  (3 x 5.4 x 6x10
24

/(4 (3.14) 1600))
1/3

 =  1.66 x 10
7
 meters = 16,600 km. 
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7.4.1 Inverse Functions 

 Once a star explodes as a 
supernova, the expanding shell of debris 
expands outwards at speeds of 10,000 
km/s to form a growing shell of gas, 
which can be seen long after the 
explosion occurred. 
 The image to the left shows the 
Cassiopeia-A supernova remnant as 
revealed by the Chandra X-ray 
Observatory. 
 A simple equation approximates 
the radius of the shell, R, in meters, 
given the density of the gas it is traveling 

through, N, in atoms/meter
3
, and the 

total energy, E, of the explosion in 
Joules. 

     

1
2

5
8 5( , , ) 2.4 10

E
R E N t x t

N
   
 

    meters 

Problem 1 – Astronomers can typically determine the size of a supernova remnant 
and estimate the density and energy, but would like to know the age of the 
expanding shell. What is the inverse function t(R,E,N) given the above formula? 
 
 
 
 
Problem 2 –  From historical data, astronomers might know the age of the 
supernova remnant, but would like to determine how much energy was involved in 
creating it. What is the inverse function E(R,N,t)? 
 
 
 
Problem 3 – The Cassiopeia-A supernova remnant has an age of about 500 years 

and a diameter of 10 light years. If 1 light year equals 9.3x10
12

 km, and the 

average density of the interstellar medium is 10
6
 atoms/meter

3
, what is was the 

energy involved in the supernova explosion? 
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Answer Key 7.4.1 
 Problem 1 – Astronomers can typically determine the size of a supernova remnant 

and estimate the density and energy, but would like to know the age of the expanding 
shell. What is the inverse function t(R,N,E) given the above formula? 
 

Answer:     

1
5

2
21 2( , , ) 1.1 10

N
t R N E x R

E
    
 

   years 

 
 
 
Problem 2 –  From historical data, astronomers might know the age of the supernova 
remnant, but would like to determine how much energy was involved in creating it. 
What is the inverse function E(R,N,t)? 
 

Answer:    
5

42
2

( , , ) 1.3 10
R N

E R N t x
t

      Joules 

 
 
Problem 3 – The Cassiopeia-A supernova remnant has an age of about 500 years 

and a diameter of 10 light years. If 1 light year equals 9.3x10
12

 km, and the average 

density of the interstellar medium is 10
6
 atoms/meter

3
, what is was the energy 

involved in the supernova explosion? 
 

Answer:     R = 5 x 9.3e
15

 =  4.7x10
16

 m. 
 

                 E = 1.3x10
-42 

(4.7x10
16

)
5
 (10

6
)(500)

-2
   Joules 

                     =   1.3x10
-42

 (2.3x10
83

) (10
6
)(4x10

-6
)   Joules 

                     =    1.2x10
42

 Joules 

Space Math                                http://spacemath.gsfc.nasa.gov 
 



7.4.2 Inverse Functions 

 
 
An artistic rendition of matter flowing into 
a black hole at the center of an 
accretion disk.  
(Courtesy M.Weiss NASA/Chandra) 

 Black holes are among the most 
peculiar objects in our universe. 
Although they can be detected at great 
distances, future travelers daring to orbit 
one of them will experience very peculiar 
changes. Let’s have a look at a small 
black hole with the mass of our Sun. Its 
radius will be defined by its horizon size, 
which is at a distance from the center of 
the black hole of  R=2.8 kilometers. 
 A distant observer on Earth will 
watch the clock carried by the Traveler 
begin to slow down according to the 
formula: 

             2.8
1

t
T

r




 

where t is the time passing on the Traveler’s clock, and T being the time interval a 
distant Observer witnesses. 
 
Problem 1 – The Observer knows that the Traveler’s clock is ticking once every 
second so that t = 1.0. Find the inverse function R(T) that gives the distance of the 
Traveler, R, from the center of the black hole in terms of the time interval, T, 
measured by the Observer back on Earth. 
 
 
 
 
 
 
Problem 2 – The Observer watches as the Traveler’s clock ticks slower and 
slower. If the Observer measures the ticks at the intervals of T= 5 seconds, 20 
seconds and 60 seconds, how close to the event horizon (R=2.8 km) of the black 
hole, in meters,  is the Traveler in each instance?  
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Answer Key 7.4.2 
 Problem 1 – The Observer knows that the Traveler’s clock is ticking once every 

second so that T0 = 1.0. Find the inverse function R(T) that gives the distance of the 
Traveler, R, from the center of the black hole in terms of the time interval, T, measured 
by the Observer back on Earth. 
 
Answer:  

                   1 – 2.8/r  =  (t / T)
2
   

                    1 – (t / T)
2
  =  2.8/r 

                   R(T) =   2.8/(1 – (t / T)
2
)       Since t = 1.0         

 

                  

2

2.8
( )

1
1

R T

T


  
 

 

 
 
 
 
Problem 2 – The Observer watches as the Traveler’s clock ticks slower and slower. If 
the Observer measures the ticks at the intervals of T= 5 seconds, 20 seconds and 60 
seconds, how close to the event horizon of the black hole, in meters,  is the Traveler in 
each instance?  
 
Answer:   Solve for R which gives the distance to the center of the black hole, and 
subtract 2.8 km, then multiply by 1000 to get the distance in meters to the event 
horizon: 
 
 For T = 5 seconds;         R(5) =   2.8/(1 – 0.04)    =    2.92 km from the center, 
                  or       2.92 km – 2.8 km =  0.12 km    =  120 meters to the horizon. 
 
T = 20 seconds        R(20) = 2.8/(1-0.0025)  =    2.807  km from the center 
                  or      2.807 km – 2.8.000 km   = 0.007 km or 7 meters to the horizon. 
 
T =  60 seconds    R(60) = 2.8/(1 – 0.00028) =  2.8008 km from the center 
                  or     2.8008 km – 2.8 km = 0.0008 km or 0.8 meters from the horizon. 
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7.4.3 Inverse Functions 

 
This sketch, based on data from the Chandra 
Observatory identifies sound waves escaping 
from the vicinity of the massive back hole 
in the center of the Perseus galaxy cluster. 
It takes 20 million years for one wave to move 
1 million light years!  (Courtesy NASA/Chandra) 

 The speed of sound in a gas is 
one of those basic properties that we 
take for granted, except when we are 
listening for sirens from fire trucks, 
trying to find out how far away lightning 
struck, or when we are playing with 
helium balloons to sound like Donald 
Duck at birthday parties. 
 
 The speed of sound, S in 
meters/second, can be calculated from 
the formula: 

               108
T

S
m

  

 
where m is the average molecular 
mass of the gas in grams/mole, and T 
is the temperature of the gas in Kelvin 
degrees.  

Problem 1 – What is the inverse function that gives the temperature of the gas in 
terms of its sound speed T(S)?  
 
 
 
 
 
 
Problem 2 – What is the inverse function that gives the composition of the gas, m, 
in terms of its sound speed m(S)?  
  
 
 
 
 
 
 
Problem 3 -  At a temperature of 300 K, the speed of sound is measured to be 450 
meters/sec. What is the inferred average molecular mass of the gas? 
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Answer Key 7.4.3 
 Problem 1 – What is the inverse function that gives the temperature of the gas in 

terms of its sound speed T(S)?  
 
Answer: 

                              
2

( )
1164

S m
T S             or      T S   2( ) 0.00086 S m

 
 
 
Problem 2 – What is the inverse function that gives the composition of the gas, m, in 
terms of its sound speed m(s)?  
  
Answer: 

                             
2

( ) 1164
T

M S
S

  

 
 
Problem 3 -  At a temperature of 300 K, the speed of sound is measured to be 450 
meters/sec. What is the inferred average molecular mass of the gas? 
 
Answer: 

                         M = 11664 (300)/(450)
2
   

                              =   17.3  grams/mole. 
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7.4.4 Inverse Functions 

 
Bok globules in the star forming region 
IC-2944 photographed by the Hubble 
Space Telescope. 

 Stars are formed when portions of 
interstellar clouds collapse upon 
themselves and reach densities high  
enough for thermonuclear fusion to begin 
to stabilize the cloud against further 
gravitational collapse. 
 An important criterion that 
determined whether a cloud will become 
unstable and collapse in this way is 
called the Jeans Criterion, and is given 
by the formula: 
 

               
3

302.5 10
T

M x
N

    kg 

 
where N is the density of the gas in 

atoms/meter
3
, and T is the temperature 

in degrees Kelvin.

Problem 1 – What is the inverse function that gives the critical density of the gas, 
N, in terms of its mass and temperature? 
 
 
 
 
 
Problem 2 – What is the inverse function that gives the critical temperature of the 
gas for a given density and total mass? 
 
 
 
 
 
Problem 3 -  An astronomer measures an interstellar gas cloud and find it has a 
temperature of T = 40 K, and a density of N = 10,000 atoms/meter3. If the 
observed mass is  200 times the mass of the sun, is this cloud stable or unstable? 

(1 solar mass = 2 x 10
30

 kilograms) 
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Answer Key 7.4.4 
 Problem 1 – What is the inverse function that gives the critical density of the gas, N, in 

terms of its mass and temperature? 
 
 

Answer:     
3

60
2

6.3 10
T

N x
M

  

 
 
 
Problem 2 – What is the inverse function that gives the critical temperature of the gas 
for a given density and total mass? 
 

                    
1 2

21 3 35.7 10T x  N M
 
 
Problem 3 -  An astronomer measures an interstellar gas cloud and find it has a 
temperature of T = 40 K, and a density of N = 10,000 atoms/meter3. If the observed 
mass is  200 times the mass of the sun, is this cloud stable or unstable? (1 solar mass 

= 2 x 10
30

 kilograms). 
 
 
Answer: Use the original equation for M and determine the critical mass for this cloud. 
If the critical mass is above this, then the cloud will collapse. If it is below this then the 
cloud is stable. 
 
 

3
302.5 10

T
M x

N
  kg 

 
3

30 40
2.5 10

10000
M x      

 

so M =   6.3 x 10
30

 kilograms. Since 1 solar mass = 2 x 10
30

 kg, M =  3.1 times the 
mass of the sun.  
 
But the mass of this interstellar cloud is 200 solar masses so since 200 > 3.1 the 
cloud must be unstable. 
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7.5.1 Graphing Square and Cube-root Functions 

 

 Gravity can cause time to run 
slower than it normally would in its 
absence. This effect is particularly strong 
near black holes or neutron stars, which 
are astronomical objects with very 
intense gravitational fields. The equation 
that accounts for gravitational time delays 
is: 
 

                  ( ) 4.0 1.0 1T x x    
 
where x is the strength of the 
gravitational field where the signal is 
sent.

Problem 1 -   What are the domain and range of T(x)? 
 
 
 

Problem 2 – How would you obtain the graph of T(x) from the graph of g(x) = x
1/2

? 
 
 
 
Problem 3 – Graph the function T(x). 
 
 
 
Problem 4 – Evaluate T(x) for the case of a clock located on the surface of a neutron 
star that has the mass of our sun, a diameter of 20 kilometers, and for which  x = 0.20. 
 
 
 
Problem 5 – Evaluate T(x) for the case of a clock located on the surface of a white 
dwarf star that has the mass of our sun, a diameter of 10,000 kilometers, and for which  
x = 0.001. 
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Answer Key 7.5.1 
 Problem 1 -   What are the domain and range of T(x)? 

 
Answer:  The domain extends from [-infinity, 1.0], however it should be noted that 
gravitational fields cannot be negative so the actual physical domain is [0,1.0] 
The range extends from [0.0,+5.0] 
 

Problem 2 – How would you obtain the graph of T(x) from the graph of g(x) = x
1/2

? 

Answer:  Shift x
1/2

 upwards by +4.0, and to the right by +1.0 
 
Problem 3 – Graph the function T(x). 
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Problem 4 – Evaluate T(x) for the case of a clock located on the surface of a neutron 
star that has a mass of the sun, a diameter of 20 kilometers, and for which  x = 0.20. 
 

Answer: T(0.20) = 4.0 + (1 – 0.2)
1/2

 = 4.89 
 
 
 
Problem 5 – Evaluate T(x) for the case of a clock located on the surface of a white 
dwarf star that has a mass of the sun, a diameter of 10,000 kilometers, and for which  
x = 0.001. 
 

T(0.001) = 4.0 + (1-0.001)
1/2

 = 4.999 
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7.6.1 Solving radical equations 

 Elliptical galaxies have very 
simple shapes. Astronomers have 
measured how the brightness of 
the galaxy at different distances 
from its core region obeys a 
formula similar to: 
 

                 
 

0
3( )

1

L
L r

ar



 

 
called the de Vaucouleur’s Law.  

In this equation, L0 is the 
brightness at the center of the 
galaxy, r is the distance from the 
center, and a is a scaling constant 
to represent many possible 
shapes of the same basic form. 

Problem 1 – Graph L(r) for the two cases where L0 = 100 and  a = 0.5 and a = 0.1. 
 
 
 
 
 
 
 
Problem 2 – The above photo is of the elliptical galaxy NGC 1311 obtained by the 
Hubble Space Telescope. Describe how L(r) relates to what you see in the image of this 
galaxy? 
 
 
 
 
 
 
 
Problem 3 -  An astronomer maps the brightness of an elliptical galaxy and determines 

that L0 = 175.76 and that at a distance of r = 5 the brightness of the galaxy has dimmed 

to 1/100 of L0. What is the value for the variable a that matches this data? 
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Answer Key 7.6.1 
 Problem 1 – Graph L(r) for the two cases where L0 = 100 and  a = 0.5 and a = 0.1. 
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By plotting more curves, students can see what effect changing the shape parameter ‘a’ has 
on the modeled brightness profile of a galaxy. This creates a family of functions L(r) for 
modeling many different types of elliptical galaxies. 
 
Problem 2 – The photo is of the elliptical galaxy NGC 1311 obtained by the Hubble Space 
Telescope. Describe how L(r) relates to what you see in the image of this galaxy? 
 
Answer:  Near r=0 the brightness of the galaxy becomes very intense and the picture shows a 
bright spot of high intensity. As you move farther from the nucleus of the galaxy, the brightness 
of the stars fades and the galaxy becomes dimmer at larger distances. 
 
 
 
Problem 3 -  An astronomer maps the brightness of an elliptical galaxy and determines that L0 
= 175.76 and that at a distance of r = 5 the brightness of the galaxy has dimmed to 1/100 of 
L0. What is the value for the variable a that matches this data? 
 
Answer:  For L0=175.76, L = 1/100, and r = 5, 

1/100 = 175.76/(5a + 1)
3
 

  (5a + 1)
3
 = 17576 

   5a + 1 = (17576)
1/3

 
   5a =   26 – 1 
     a =   5        so the function that models the brightness of this elliptical galaxy is 
 

                                                 
3

175.76
( )

(5 1)
L r

r



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7.6.2 Solving radical equations 

 As the universe expanded and 
cooled, the gases began to form clumps 
under their own gravitational attraction. As 
the temperature of the gas continued to cool, 
it became less able to resist the local forces 
of gravity, and so larger and larger clouds 
began to form in the universe.  A formula 
that models the growth of these clouds with 
temperature is given by the Jeans Mass 
equation 

                  
18

5 3

9.0 10
( )

(1 9.2 10 )

x
M T

x T


 

 
where T is the temperature of the gas in 
Kelvin degrees, and M is the mass of the gas 
cloud in units of the sun’s mass. 

Problem 1 – The mass of the Milky Way galaxy is about 3.0x10
11

 solar masses, 
at about what temperature could gas clouds of this mass begin to form? 
 
 
 
 
 
 
 
 
 
 
Problem 2 – Graph this function in the range from T= 1,000 K to T = 10,000 K.  
What was the size of the largest collection of matter that could form at a 
temperature of 4,000 K? 
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Answer Key 7.6.2 
 Problem 1 – The mass of the Milky Way galaxy is about 3.0x10

11
 Msun, at about what 

temperature could gas clouds of this mass begin to form? 
 

3 x 10
11

 =  9 x 10
18

 / (1 + 9.2 x 10
-5

 T)
3
 

(1 + 9.2 x 10
-5

 T)
3  

=  9 x 10
18

/ 3 x 10
11

 

1 + 9.2 x 10
-5

 T  =   (3.0x10
7
)
1/3

 

T =  (309 – 1)/9.2x10
-5

   
 
T =  3.3 million degrees. 
 
 
 
 
Problem 2 – Graph this function in the range from T= 1,000 K to T = 10,000 K.  What 
was the size of the largest collection of matter that could form at a temperature of 
4,000 K? 
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For T = 4,000 K the maximum mass was 3.5 x 10

18
 Msun. Note this equals a collection of 

matter equal to about  12 million galaxies, each with  the mass of our Milky Way 
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7.7.1 Statistics and statistical graphs 

 The Hydra Galaxy Cluster 
 located  158 million light years 
from Earth contains 157 galaxies, 
some as large as the Milky Way. 
 
 Astronomers determine 
whether a galaxy is a member of 
a cluster by comparing its speed 
with the average speed of the 
galaxies in the cluster. Galaxies 
whose speeds are more than  3 
standard deviations from the 
mean are probably not members. 

The average speed of a collection of galaxies 
is given by 

                      
1

1
N

i

is
N

v


   

and the standard deviation of the speed is 
given by 

               

2

1

( )

1

N

i

i

v s

N
 







 

 
Problem 1 – Create a frequency ‘bar’ graph of the 
number of galaxies in 100 km/sec bins between  
2400 and 4700 km/sec. 
 
 
Problem 2 – From the table, what is the average 
speed, s, of the galaxies in the Hydra I cluster?    
 
 
Problem 3 – From the table, what is the standard 

deviation, , of the speeds in the table?  
 
Problem 4 - Which galaxies may not be a member 
of this cluster? 

   Galaxy        Speed 
         (km/s) 
NGC 3285  3329 
NGC 3285b  3149 
NGC 3307  3897 
NGC 3311  3856 
NGC 3316  4033 
ESO501G05  4027 
ESO436G34  3614 
ESO501G13  3504 
ESO501G20  4306 
ESO437G04  3257 
ESO501G40  3686 
ESO437G11  4745 
ESO501G56  3456 
ESO501G59  2385 
ESO437G21  3953 
ESO501G65  4378 
ESO437G27  3867 
ESO501G66  3142 
ESO501G70  3632 
ESO437G45  3786 

Space Math                                http://spacemath.gsfc.nasa.gov 
 



Answer Key 7.7.1 
 Problem 1 – Create a frequency ‘bar’ graph of the number of galaxies in 100 km/sec 

bins between  2400 and 4700 km/sec. 
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Problem 2 – From the table, what is the average speed of the galaxies in the Hydra I 
cluster ?    
Answer:  The sum of the 20 speeds is  74,002  so the average speed  
V = 74002/20  
V = 3,700 km/sec. 
 
 
 
Problem 3 – From the table, what is the standard deviation of the speeds in the table?  
Answer: 
 = 504 km/sec 
 
 
Problem 4 - Which galaxies may not be a member of this cluster? 
 
Answer:   From the 3-sigma test, we should probably not include galaxies shows 
tabulated speeds are greater than   s + 3 and s - 3. Since  = 504 km/s, the speed 
range is   3,700 + 1,512 = 5,212 km/s and 3700 - 1,512 = 2,188 km/s.  Since the 
tabulated galaxies all have speeds between  2,385 and  4,745 km/s they are probably 
all members of the cluster. 
 
Data table obtained from Richter, O.-G., Huchtmeier, W. K., & Materne, J. , Astronomy 
and Astrophysics V111, p195 Table 1 “The Hydra I Cluster of Galaxies’ 
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7.7.2 Statistics and statistical graphs 

 
       http://www.swpc.noaa.gov/SolarCycle/ 

The number of sunspots you 
can see on the sun varies during an 
11-year cycle. Astronomers are 
interested in both the minimum number 
and maximum sunspot number (SSN) 
recorded during the 300 years that 
they have been observed. Use the 
following formulae to answer the 
questions below. 
 

 
1

1
N

i

is
N

v


         

2

1

( )

1

N

i

i

v s

N
 







 

Cycle Minimum Maximum
1 10 86 
2 11 106 
3 7 154 
4 10 132 
5 4 47 
6 0 46 
7 2 71 
8 9 138 
9 11 125 
10 4 96 
11 7 139 
12 3 64 
13 6 85 
14 3 63 
15 1 104 
16 6 78 
17 6 114 
18 10 152 
19 4 190 
20 10 106 
21 13 155 
22 13 158 
23 9 120 

Problem 1 – On two separate graphs, 
create a frequency histogram of the sunspot 
A) the SSN minima and B) the SSN maxima 
with binning of 10 and a range of 0 < SSN < 
200 
 
 
 
Problem 2 – From the table, and rounded to 
nearest integer what is A) the average  
sunspot minimum and maximum? B) The 
median and mode from the graph? 
 
 
 
Problem 3 – From the table, what is the 
standard deviation, , of the minimum and 
maximum sunspot numbers to the nearest 
integer? 
 
 
 
Problem 4 – Which sunspot cycles appear 
to be more than 1 standard deviation from 
the mean value for sunspot maximum?  
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Answer Key 7.7.2 
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Problem 1 – On two separate graphs, create a frequency ‘bar’ graph of  the sunspot 
minima and maxima with binning of 1 for the minimum frequency and 10 for the 
maximum frequency. 
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Problem 2 – From the table, what is A) the average ‘rounded to nearest integer’ sunspot 
minimum and maximum? B) The median and mode from the graph? 
 
Answer:   Minimum:  Average =  7, Median =   7   Mode = 10 
                Maximum: Average =  110, Median =  100  Mode =   150 
 
Problem 3 – From the table, what is the standard deviation of the minimum and maximum 
sunspot numbers to the nearest integer? 
 
Answer:  Minimum:   = (320/22)1/2 =  3.8 or  4 
               Maximum:  =  (33279/22)1/2 =  38.9 or 39 
 
Problem 4 – Which sunspot cycles appear to be more than 1 standard deviation from the 
mean value for sunspot maximum? (Example:  Cycle 19:  (190-110)/39 = 2.1 sigma 
Answer:  Cycle 3: (1.2); Cycle 5: (-1.7); Cycle 6: (-1.7); Cycle 12: (-1.2); Cycle 14: (-1.2); 
Cycle 19: (2.1); Cycle 21: (1.2) and Cycle 22: (1.3). 
 
Data table obtained from the National Geophysical Data Center (NOAA) 
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT _NUMBERS/YEARLY 



7.7.3 Statistics and statistical graphs 

 A small portion of NASA’s 
WISE star field image (left) shows 
many faint stars, and dark spaces 
between them. Because these are 
digital images, the ‘dark’ regions 
are actually defined by 
measurements of the intensity of 
the ‘empty sky’ which can include 
light from Earth’s atmosphere, 
scattered sunlight, and the digital 
camera’s own electronic ‘noise’ 
 Astronomers can ‘clean’ 
their images of these 
contaminating backgrounds by 
performing simple statistics on the 
data. 

 Astronomers used the ‘raw’ data and isolated a blank region of the 
image far from any obvious star images. They measured the following 
intensities for each of 25 pixels in a small square patch of 5 x 5 pixels within 
the image: 
 
   254, 257, 252, 256, 258,  
   255, 254, 257, 256, 255,  
   259, 256, 253, 257, 256,  
   255, 256, 254, 258, 255,  
   256, 257, 253, 258, 255 
 
Problem 1 – What is the frequency distribution of the background data? 
 
 
Problem 2 – The average level of the background ‘sky’ intensity is found by 
computing the average of the pixel intensities in the dark area of the image. 
What is the average background intensity, B, of the dark region of the 
image? 
 
 
Problem 3 – A measure of the combined instrument ‘noise’ and sky 
background variations of the image is found by calculating the standard 
deviation of the background pixel intensities. What is standard deviation of 
this patch of the ‘dark’ sky in the image? 
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Answer Key 7.7.3 
 Problem 1 – What is the frequency distribution of the background data? 
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Problem 2 – The average level of the background ‘sky’ intensity is found by computing 
the average of the pixel intensities in the dark area of the image. What is A) the 
average background intensity, B, of the dark region of the image? B) The median 
intensity? C) The mode intensity? 
 
Answer:  B =  6392/25 =  255.7 
               Median = 256 
               Mode =    256 
 
 
 
Problem 3 – A measure of the combined instrument ‘noise’ and sky background 
variations of the image is fund by calculating the standard deviation of the background 
pixel intensities. What is standard deviation of this patch of the ‘dark’ sky in the image? 
 

Answer:     sigma =  (73.44/25)
1/2

  
                     sigma    =  1.7  
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